Numerical models of net-structure stents inserted into arteries
نویسندگان
چکیده
INTRODUCTION Restenosis is strongly attributed to stresses caused by stent-artery interactions generated in the artery after balloon angioplasty. Numerical methods are often used to examine the stent-artery mechanical interactions. To overcome the extensive computational requirements demanded by these simulations, simplifications are needed. OBJECTIVE We introduce simplified models to calculate the mechanical interactions between net-structured stents and arteries, and discuss their validity and implications. METHODS 2D simplified numerical models are suggested, which allow cost effective assessment of arterial stresses and the potential damage factor (DF). In these models, several contact problems were solved for arteries with hyper elastic mechanical properties. Stresses were calculated for a large range of cases and for different numerical model types. The effects of model simplifications, oversizing mismatch and stenosis rate and length and symmetry on the resulting stresses were analyzed. RESULTS & CONCLUSIONS Results obtained from planar 2D models were found in good agreement with results obtained from complex 3D models for cases with axisymmetric constant or varying stenosis. This high correlation between the results of 3D cases with varying stenosis and the more simple 2D cases can be used as a simplified and convenient tool for calculating the arterial wall stresses in complex cases. Maximal stresses obtained by the 2D model with an asymmetric stenosis are lower than the maximal stresses obtained in the axisymmetric case with the same stenosis percentage. Therefore, axisymmetric models may provide the worst-case estimation values for a stent of interest.
منابع مشابه
Numerical Investigation of Angulation Effects in Stenosed Renal Arteries
Background: Numerical study of angulation effects of renal arteries on blood flow has been of great interest for many researchers.Objective: This paper aims at numerically determining the angulation effects of stenosed renal arteries on blood flow velocity and renal mass flow.Method: An anatomically realistic model of abdominal aorta and renal arteries is reconstructed from CT-scan images and u...
متن کاملOversizing of self-expanding stents: influence on the development of neointimal hyperplasia of the carotid artery in a canine model.
BACKGROUND AND PURPOSE In carotid artery stent placement, marked oversizing of the stent relative to the internal carotid artery lumen is common. This study was performed to determine the influence of using oversized self-expanding nitinol stents on neointimal hyperplasia. METHODS In six greyhound dogs, 24 self-expanding nitinol stents (eight SMART stents, eight Easy Wallstents, eight Sinus-F...
متن کاملNumerical simulation of Nitinol peripheral stents: from laser-cutting to deployment in a patient specific anatomy
The current clinical trend is to use percutaneous techniques, exploiting Nitinol self-expanding stents, to treat peripheral occluded vessels such as carotid or superficial femoral arteries. Although this class of stents addresses the biomechanical requirements (i.e. flexibility, kink resistance, etc.), it has been observed that many of these stents implanted in peripheral vessels are fractured....
متن کاملStudy of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction
Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...
متن کاملConformity of carotid stents with vascular anatomy: evaluation in carotid models.
BACKGROUND AND PURPOSE Conformity between self-expanding Wallstents and vascular anatomy is limited. Because of a lack of longitudinal flexibility, straightening effects on vascular curves occur and may result in stent-induced kinking. Our purpose was to evaluate the conformity of self-expanding stents with the course and endoluminal surface of silicone models of the normal human carotid artery...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers in biology and medicine
دوره 52 شماره
صفحات -
تاریخ انتشار 2014